Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold.
نویسندگان
چکیده
Considering the load-bearing physiological requirement of articular cartilage, scaffold for cartilage tissue engineering should exhibit appropriate mechanical responses as natural cartilage undergoing temporary deformation on loading with little structural collapse, and recovering to the original geometry on unloading. A porous elastomeric poly l-lactide-co-ɛ-caprolactone (PLCL) was generated and crosslinked at the surface to chitosan to improve its wettability. Human bone marrow derived mesenchymal stem cells (MSC) attachment, morphological change, proliferation and in vitro cartilage tissue formation on the chitosan-modified PLCL scaffold were compared with the unmodified PLCL scaffold. Chitosan surface promoted more consistent and even distribution of the seeded MSC within the scaffold. MSC rapidly adopted a distinct spread-up morphology on attachment on the chitosan-modified PLCL scaffold with the formation of F-actin stress fiber which proceeded to cell aggregation; an event much delayed in the unmodified PLCL. Enhanced cartilage formation on the chitosan-modified PLCL was shown by real-time PCR analysis, histological and immunochemistry staining and biochemical assays of the cartilage extracellular matrix components. The Young's modulus of the derived cartilage tissues on the chitosan-modified PLCL scaffold was significantly increased and doubled that of the unmodified PLCL. Our results show that chitosan modification of the PLCL scaffold improved the cell compatibility of the PLCL scaffold without significant alteration of the physical elastomeric properties of PLCL and resulted in the formation of cartilage tissue of better quality.
منابع مشابه
Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes.
The stromal vascular fraction (SVF) of adipose tissue provides an abundant source of mesenchymal stem cells. For clinical application, it would be beneficial to establish treatments in which SVF is obtained, seeded onto a scaffold, and returned into the patient within a single surgical procedure. In this study, we evaluated the suitability of both a macroporous poly(L-lactide-co-caprolactone) a...
متن کاملCartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
Compressive mechanical stimuli are crucial in regenerating cartilage with tissue engineering, which creates a need for scaffolds that can maintain their mechanical integrity while delivering mechanical signals to adherent cells during strain applications. With these goals in mind, the aim of this study was to develop a mechano-active scaffold that facilitated effective cartilaginous tissue form...
متن کاملDifferentiation of Human Mesenchymal Stem Cell into Chonderocyte Like Cells 3D Poly Lactic Acid Glycosaminoglycan (PCL-GAG) Nano Fibre Scaffold
Introduction: Failure of human body tissue and organs is believed to be one of the most important health problems all over the world. The great challenge for tissue engineers is to optimize suitable systems to separate, proliferate and differentiate the cells so that they can set out to create tissue by a harmonic 3-D growth. Therefore, the tissue engineers must provide an environment like the ...
متن کاملElectrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration
BACKGROUND Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the su...
متن کاملHydrogel is Superior to Fibrin Gel as Matrix of Stem Cells in Alleviating Antigen-Induced Arthritis
Recently, therapy with bone marrow mesenchymal stem cells (BMMSCs) has been attempted to relieve rheumatoid arthritis (RA) and reconstruct cartilage injury. However, treatment has been unsuccessful in complete prevention of persistent cartilage destruction and resulted in inferior outcomes of cartilage regeneration. Scaffolds are an important construct in the field of cartilage tissue engineeri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part A
دوره 18 3-4 شماره
صفحات -
تاریخ انتشار 2012